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1. Introduction 
In recent years of aviation, winglets have been a key area of research for aerospace 

engineers to study their aerodynamic and performance-inducing capabilities. They play a critical 
role in mitigating induced drag which is caused by the wing’s finite span and the presence of 
wingtip vortices. The winglet design effectively reduced such disturbances by decreasing the 
strength and size of these vortices. Recent fluid simulations and flight tests for these wingtip 
structures have exhibited their favorable contribution to reducing fuel consumption and enhancing 
aircraft range. The mechanism fundamental for the operation of a winglet primarily alters the 
direction of the airflow around the wing to reduce the wingtip vortices effects. That is why, the 
wing-winglet interaction becomes an area of focus since the mechanism controlling the winglet 
cant angle should be strong enough to withstand the aerodynamic and structural loads as well as 
cozily fit inside the wing structure.  

 
This project aims to model and analyze the motion of a parallel mechanism system that 

controls the cant angle of the winglet, enabling wing-morphing capabilities. The parallel 
mechanism is shown in Figure 1, it utilizes two linkages with opposite motion attached to a 
common end effector (Winglet), with one linear actuator in the extension link and another in the 
retraction link to achieve the cant motion of the winglet.  
 

  
Figure 1: Winglet Parallel Mechanism Housed in the Wing Structure. 

The parallel mechanism for a winglet cant actuation is designed to achieve greater payload 
capacity without sacrificing the mechanism’s performance and efficiency. The design of a parallel 
mechanism for the purposes of controlling a winglet offers several advantages in terms of its 
stiffness, and payload capacity. Its characteristic stiffness, which results from the redundant 
constraints provided by the parallel links arrangement, ensures greater accuracy and strength in 
rotating the winglet. Additionally, its ability to handle heavy aerodynamics and structural loads 
while maintaining high rotation accuracy and speed is achieved by distributing the load among 
multiple actuators, Joints, and links.  
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The extension and retraction linkages are similar to each other in terms of their kinematic 
design, with 6 linkages and 7 joints each, making it a six-bar spatial linkage with a linear actuator. 
The mechanism translates the planar motion (X-Y Frame) of the linear actuator into a rotary 
motion (X-Z Frame) for the common end effector, in this case, the winglet. The joint types for 
each subsystem consist of three spherical joints, three revolute joints, and a prismatic joint that 
provides for the necessary actuation. The local Degree of Freedom (DOF) for the aforementioned 
joints are 3, 1, and 1 respectively. Thus, the complete DOF for each subsystem is calculated to be 
13. Further, since the mechanism is a spatial system, the mobility of each subsystem is computed 
to be 1. Since the mobility of the subsystem is less than Lamda for a spatial system (𝜆 = 6), the 
mechanism is defined as constrained with only one motor/actuator necessary for the motion of the 
mechanism. The mechanism is also defined as a closed-loop system since the end effector position 
does not change during the motion of the mechanism.  

 
The objective for this project is to complete the dynamic modeling of the system using 

MATLAB resources and equations of motion developed in the class, to understand the machine’s 
design, motion, and control. Firstly, the project will focus on computing the tool tip’s (i.e. the 
winglet) position, orientation, and kinematics given a set of initial orientations, positions, 
velocities, and acceleration for each joint. This will be completed by utilizing the inverse 
kinematics methodology wherein the tip motion guides the analysis procedure to compute the base 
parameters mentioned above in the reverse order. Secondly, by using the calculated motion 
parameters mentioned above, the analysis will employ the Euler-Newton Recursive method to 
calculate the joint forces under each joint’s self-weight and the given payload weight and tip force. 
Finally, the study will use these computed parameters to simulate the mechanism that incorporates 
the joint position, velocity, and acceleration. 

2. Mobility Analysis 
 In this project, the mobility analysis of the chosen parallel mechanism is divided into halves 
for the sole purpose of similarity. Hence, a similar analysis for Linkage A will also apply to 
Linkage B due to symmetry in their operation. As seen in Figure 2, the kinematic architecture of 
the parallel mechanism incorporates spherical joints, revolute joints, and a prismatic joint 
connected by links to a common end effector that rotates about a common axis of rotation. This 
configuration makes the system a six-bar spatial linkage with a linear actuator. The input for the 
linear actuator is applied in a planar (X-Y) frame and the rotary output for the common end effector 
is in a planar (X-Z) frame. 
 

 
Figure 2: Kinematic Architecture for the Two Branches of the Mechanism. 
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 For each linkage, there are 7 joints and 6 links. The three spherical joints have a local DOF 
of 3 each. The three revolute joints have a local DOF of 1 and finally, the prismatic joint has a 
local DOF of 1 as well. Using the kinematic pair information, the total degree of freedom for the 
system is calculated to be 13 and the mobility of the system is calculated to be 1 for this spatial 
mechanism. Linkages A and B have similar kinematic structures and therefore will have the same 
DOF and mobility. However, due to their spatial constrain and parallel similarity, they will have 
opposing motions. To illustrate this, if the linear actuator for Linkage A extends, the linear actuator 
of Linkage B will retract to provide for the rotation of the common end effector about a common 
axis of rotation. Therefore, the purpose of this parallel actuation is to provide for a desired rotation 
of the common end effector at a prearranged angular speed.  
 
 The kinematic modeling for a branch is completed using inverse kinematics, wherein, the 
end effector motion is predefined, and the joint kinematics is analyzed in reverse order to calculate 
the base parameters. The Linkage A branch model is illustrated in Figure 3. The system is further 
divided into two loops for the purpose of motion analysis only. The starting loop features the 
spatial rotational motion of the end effector in the X-Z frame. The spatial loop 1 is defined with 
points P6, P5, P4, and P3. The input angular motion of the end effector translates the motion of 
this loop into the translation motion of loop 2. The second loop is defined as a planar loop with 
motion in the X-Y frame. The planar motion then defines the motion of the linear actuator. Loop 
2 is defined by points P1, P2, and P3. The rotation of point P6 rotates the links about point 3 which 
then drives the linear actuator. This process is also known as inverse kinematics which is used to 
calculate the position, velocity, and acceleration of each joint.  
 

 
Figure 3: Isometric View of Linkage A Branch with Joint-Link Pairs for Kinematic Modelling. 
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The rotation of the end effector is about point P6. Therefore, the motion of point P5 is 
planar in the X-Z frame. On the other hand, the rotation of point P3 in planar loop 2 drives point 
P4 in the X-Y frame. Therefore, despite using spherical joints placed at points P2, P4, and P5 their 
motion is entirely planar. This is one of the limitations of analyzing the mechanism analytically. 
However, the planar motion for spherical joints simplifies the following kinematic analysis of the 
mechanism.  

 
Figure 4 illustrates Linkage A in its top view (left) and side view (right). The top view 

depicts the planar loop 2 with a linear actuator placed between points P1 and P2. The figure also 
shows the circular trajectory of point P4 and the motion in the X-Y frame. The side view illustrates 
the spatial loop 1 with a rotating motion of the end effector in the X-Z frame. The figure also shows 
the circular trajectory of point P6 (end effector). Each loop consists of three links. The linear 
actuator is represented by r1. The triangular link is denoted by r2 and r3. The spatial link is denoted 
by r4, and the end effector link is represented by r5 with a rotation angle of θ6. 

 

 
Figure 4: Top View (Left) – Planar Motion in X-Y Frame, and Side View (Right) – Rotating Output Motion in X-Z Frame. 

3. Coordinate System 
 In analyzing a mechanism, the next important step is to define the coordinate frames for 
the number and type of joints. The coordinate frames are defined for each ‘n+1’ joint relative to 
the relative ‘n’ joint, and the base ‘no’ joint is defined relative to the global frame. Figure 5 
illustrates the stick figure of the mechanism with link and joint nomenclature. The total number of 
joints is 7 and the total number of links is 6 including the ground link. Joints J1, J4, and J7 depict 
revolute joints with one DOF each and rotation about their local z-axis. Joints J3, J5, and J6 depict 
spherical joints with three DOF each with a rotation about the X&Y axis for Joints J3 and J5 and 
a rotation about the X&Z axis for Joint J6. Finally, Joint J2 depicts the prismatic joint with one 
DOF which represents a linear actuator in the mechanism. The linear motion of the actuator is in 
its local Z axis. The coordinate frame for the position analysis is illustrated in Figure 5. The static 
and motion rotation for each joint is further determined to compute the base rotation angle for joint 
J1 in the inverse kinematics method.  
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Figure 5: Stick Figure for the proposed Linkage A Branch with Link and Joint nomenclature. 

Further, the coordinate frames for the mechanism are divided into four branches presented 
in Figure 6. This is done due to the system being a closed chain loop. The joint velocity, 
acceleration, and forces are computed using this branched coordinate system. The branching 
follows the inverse analysis direction as well. Branch 1 consists of 2 links and 1 joint, which is the 
end effector revolute joint. The motion of the end effector is given in degrees with a rotation about 
the local Z axis along with its angular velocity, acceleration, and base forces. The dynamic motion 
of joint J6 is then computed using the given end effector inputs. Branch 2 consists of 3 links and 
2 joints. Using the calculated dynamic motion of joint J6, the dynamic analysis of joints J4 and J5 
is calculated. Branch 3 consists of 2 links and 1 joint. The base rotation and dynamic characteristics 
for joint J4 are similar in branches 2 and 3. Thus the dynamic motion of joint J3 is calculated using 
the joint J4 rotation, angular velocity, acceleration, and forces. The motion of joint J3 drives the 
linear actuator and rotates the revolute joint at position P1. The linear displacement, velocity, and 
acceleration of the linear actuator (prismatic joint) are calculated using the dynamic motion of joint 
J3.  

 

 
Figure 6: Branched Coordinate System for Dynamic Analysis. 
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Figure 6 represents the 4 branches developed for the dynamic analysis. The branches 
consist of their respective coordinate frame system at each joint along with their static rotations 
matrices. Table 1 tabulates the static rotation matrices for each joint and the local body vectors for 
each link in the branched coordinate frame system for the dynamic analysis. The body vectors are 
presented with respect to their local coordinate frame. The local body vectors can be multiplied by 
the respective static rotation matrix to calculate the body vector of the link in the global frame. 
The following equations are used to calculate the global body vector for each link and the position 
of each joint in the global frame. Note, that the end effector joint J7 and the base joint J1 are always 
fixed since the mechanism is a closed-loop system. 

 
𝑏! = 𝑅"!# ∗ 𝑏!$ 

𝑃%&',#)*)!+ =)𝑏!

%

!,"

 

 
Table 1: Static Rotation Matrix and Local Static Body Vectors. 

 Branch 1 Branch 2 Branch 3 Branch 4 

Static 
Rotation 
Matrix 

(Rs) 

𝑅!"# = $
1 0 0
0 0 −1
0 1 0

( 

𝑅!"# = $
0.4748 −0.8801 0
0.801 0.4748 0
0 0 1

( 𝑅!"#

= $
−0.9358 −0.3526 0
0.3526 −0.9358 0
0 0 1

( 

𝑅!"#

= $
0.7324 −0.6809 0
0.6809 0.7324 0
0 0 1

( 

𝑅"$#

= $
0.3660 0.0469 −0.9294
−0.9219 −0.1181 −0.3690
−0.1270 0.9919 0

( 𝑅"$# = $
0 0 1
0 1 0
−1 0 0

( 

Local 
Body 

Vector 
(bn

’) 
(mm) 

𝑏"#%
= [−42.7 −110 0]% 

𝑏"#% = [182.6 0 0]% 

𝑏"#% = [182.6 0 0]% 

𝑏"#% = [58.97 0 0]% 

𝑏$#% = [157.4 0 0]% 𝑏$#% = [0 0 329.13]% 

4. Position Analysis 
 The position analysis is completed using the inverse kinematics of the mechanism. In this 
analysis, the rotation of the end effector (P6 or J7) in the X-Z frame is given by an angle θ6. For 
analysis purposes, this angle is assumed as 30 degrees. The pre-defined θ6 will give the orientation 
for the end effector which then drives the linear actuator at joint J2. The stroke length of the linear 
actuator is denoted by length r1 in Figure 3. As illustrated in Figures 3&4, the rotation of the end 
effector in the X-Z frame drives the linear actuator in the X-Y frame. 

4.1 Position 
 Since the position of point P6 for the end effector is stationary, vector P6 is always known. 
With the change in angle θ6,	the	location	of	point	P5	is	calculated	by	the	following	relationship:	
 

𝑷𝟓 = 𝑷𝟔 − D
𝑟/ ∗ sin(𝜃/)

0
𝑟/ ∗ cos(𝜃/)

J 

 
 Point P3 is fixed, therefore vector P3 is always constant. Using the calculated position of 
point P5, the link magnitudes r3 and r4 are calculated using the following relationships. The z-
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component of point P4 is always zero since it is a part of the planar loop 2. Therefore, the system 
of two unknows (X&Y component of P4) are solved simultaneously using two equations: 
 

𝑟0 = |𝑷𝟓 − 𝑷𝟒| 
 

𝑟2 = |𝑷𝟑 − 𝑷𝟒| 
 

As seen in Figure 3, the points P4 and P2 are located on the same triangular link. They are 
separated by the following rotation matrix with a rotation of Rz(θ3). 

 

𝑹4 = D
cos(𝜃5) −sin(𝜃5) 0
sin(𝜃5) cos(𝜃5) 0
0 0 1

J 

 
 The unit vector for link r3 is then multiplied by the above rotation matrix and the length r2 
to calculate the change in position of the triangular link with respect to the pre-defined rotation of 
end effector angle θ6.	

𝑼52 =
𝑷𝟑 − 𝑷𝟒

𝑟5
 

 
𝑷𝟐 = 𝑷𝟑 − 𝑟4𝑹4𝑼52 

 
 Lastly, the linear actuator length r1 is then calculated by the following relation. This 
completes the position analysis using the inverse kinematics. As the end effector rotates with θ6,	
the	above	equations	are	used	to	calculate	the	position	for	each	point	and	the	stroke	length	of	
the	linear	actuator. 

𝑟' = |𝑷𝟐| 
The initial positions and final positions are for each joint are calculated and tabulated in 

Table 2. As seen, joints J1, J4, and J7 are fixed in space. The prismatic joint is located at joint J2, 
therefore, the link between joints J2 and J3 acts as a linear actuator. 

 
Table 2: Initial and Final Positions for Joints 1 to 7 using Inverse Kinematics. 

 Initial Positions (mm) Final Positions (mm) 
Joint 1 [0 0 0]5 [0 0 0]5 
Joint 2 [43.2 40.1 0]5 [104.4 148 0]5 
Joint 3 [284.1 264.4 0]5 [336.6 339.1 0]5 
Joint 4 [455 200 0]5 [455 200 0]5 
Joint 5 [541.7 360.7 0]5 [608.6 298.7 0]5 
Joint 6 [696.8 342.5 0]5 [757.5 342.5 −26]5 
Joint 7 [739.5 342.5 90]5 [739.5 342.5 90]5 

 
The results for the position analysis are illustrated by the mechanism diagram in Figure 7. 

The graph shows static and motion configurations for the mechanism as seen in the legend. The 
two configurations compare the change in position for joints J2, J3, J5, and J6. Joint J2 being the 
linear actuator, the extension of the actuator stroke is visible in the red. This linear motion of r1 is 
achievable due to the motion of end effector with an angle θ6 in X-Z frame about the local Z-axis. 
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Figure 7: Static and Motion Results for Position Analysis. 

4.2 Orientation 
 Subsequent to defining the static rotation matrices and local body vectors as tabulated in 
Table 1. The final orientation of the joints is calculated by defining motion rotation matrices and 
motion body vectors for each joint in each branch. Since the system is divided into four branches 
as described in Figure 6, the calculation follows the inverse kinematics scheme. Firstly, the 
rotation of the end effector in X-Z frame is defined with a motion of 30 degrees for θ6	about	its	
local	Z-axis.	The	motion	rotation	matrices	and	motion	body	vectors	are	defined	in	Table	3.	
 
Table 3: Motion Rotation Matrix and Local Motion Body Vector. 

 Branch 1 Branch 2 Branch 3 Branch 4 

Motion 
Rotation 

Matrix (Rm) 

𝑅"&

= $
0.866 −0.5 0
0.5 0.866 0
0 0 1

( 

𝑅"& = $
0.8751 0.4840 0
−0.4840 0.8751 0

0 0 1
( 𝑅"&

= $
0.8751 0.4840 0
−0.4840 0.8751 0

0 0 1
( 

𝑅"&

= $
0.9992 −0.0401 0
0.0401 0.9992 0
0 0 1

( 

𝑅$&

= $
0.623 0.144 0.770
−0.091 0.990 −0.11
−0.777 0 0.629

( 𝑅$& = $
1 0 0
0 1 0
0 0 1

( 

Motion 
Body Vector 
(bm, n) (mm) 

𝑏"&% = [0 0 0]% 
𝑏"&% = [0 0 0]% 

𝑏"&% = [0 0 0]% 
𝑏"&% = [0 0 0]% 

𝑏$&% = [0 0 0]% 𝑏$&% = [0 0 89]% 

  
The motion rotation matrices and motion body vectors in Table 3 are used to calculate the 

tip orientation and tip position for each branch. The following relationships are used for this 
calculation. Note that the calculated tip position vectors are different from the position vectors 
presented in the position analysis (Section 5.1 – Table 2). This is because the location of the global 
coordinate frame for each branch is different from the location of the coordinate frame used to 
complete the position analysis. Thus, the definition of the subsequent rotation matrices is also 
different. The tip rotation matrices and tip position vectors for the four branches are tabulated in 
Table 4. To check if the position vectors are correct, they can be transformed back to the global 
coordinate frame at joint J1 and cross checked with the position vectors tabulated in Table 2. 

 
𝑏! = 𝑅"!# ∗ 𝑅!7 ∗ 𝑏!$ 
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𝑃%&',78)!8% =)𝑏!

%

!,"

 

 
Table 4: Tip Orientation and Tip Position. 

 Branch 1 Branch 2 Branch 3 Branch 4 

Tip 
Orientation 

(Rot) 
$
0.866 −0.5 0
0 0 −1
0.5 0.866 0

( $
0.945 0.218 0.242
0.278 −0.156 −0.947
−0.169 0.963 −0.209

( $
−0.648 −0.762 0
0.762 −0.648 0
0 0 1

( $
0 −0.7102 0.7040
0 0.7040 0.7102
−1 0 0

( 

Tip 
Position 
(Rn + 1) 
(mm) 

[18.02 0 −116.6]% [302.5 142.5 −26.6]% [−118.4 139.1 0]% [335.9 338.8 0]% 

5. Motion Analysis 
 The motion analysis continues with computing the joint velocities and accelerations. The 
equation for angular and linear velocity and acceleration are derived similarly to the inverse 
kinematics methodology for position analysis in Section 5.1. For the motion analysis, the angular 
velocity and angular acceleration for the end effector and point P6 (joint J7) are pre-defined. For 
this analysis, the angular velocity (ω6) is assumed to be 1 deg/s, and the angular acceleration (⍺6)	
is assumed to be 1 deg/s2. The linear velocity and acceleration for the linear actuator from loop 2 
are calculated using the predefined joint J7 parameters (θ6,	ω6,	and	⍺6), and the inverse kinematics 
defined in the next section. 

5.1 Velocity Analysis 
 Similar to the position analysis, the derivation of velocity equations for each joint starts 
with an end effector to the linear actuator at joint J2 and base rotation at joint J1. The velocity at 
position P5 is calculated by taking a time derivative of its position relationship. The velocity vector 
for point P5 is as follows: 

𝑽0 = −𝑟/ ∗ 𝜔/ ∗ D
cos(𝜃/)

0
−sin(𝜃/)

J 

 
 Furthermore, taking a time derivative of magnitude equations for r3 and r4 and then 
simultaneously solving them gives the velocity vector for point P4. Note that since the z-
component for the position vector at point P4 is zero, its velocity component will also be zero. 
Thus, the relationship becomes two unknowns with two equations. Additionally, the velocity at 
point P3 is zero since it is fixed in space.  
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(𝑃29 − 𝑃09) ∗ (𝑉29 − 𝑉09) + ^𝑃2: − 𝑃0:_ ∗ ^𝑉2:_ + (𝑃0;) ∗ (𝑉0;) = 0 
 

(𝑃59 − 𝑃29) ∗ (−𝑉29) + ^𝑃5: − 𝑃2:_ ∗ ^−𝑉2:_ = 0 
 

The velocity of point P2 can be calculated by taking the time derivative of its position 
relationship. The velocity vector for point P2 is calculated as follows: 

 

𝑽4 = 𝑟4 ∗ 𝑹4 ∗
𝑽2
𝑟5

 

 
 However, to calculate the stroke length, velocity, and acceleration of the linear actuator, 
the control rate equation is derived using Jacobian formulations. Using the computed velocity 
vector V2 and a control sample period of 1 sec, the Jacobian formulation and the control rate are 
as follows: 

𝑃4,! = 𝑃4,!<' − 𝑽4,! ∗ (Δ𝑡) 
 

Δ𝑉*+)=*)8> =
b𝑃4,! − 𝑃4,!<'b

Δ𝑡  
 
 The control rate equation defines the change in velocity of the actuator stroke. ΔV 
represents the change in stroke position corresponding to the sample period Δt. This velocity is 
proportional to the actuator linear velocity which is required for the end effector rotation motion 
at the defined angular velocity (ω6 = 1 deg/s) as defined in the problem statement. 
 
Table 5: Angular Velocity and Linear Velocity for Joints. 

 Angular Velocity (deg/s) Linear Velocity (mm/s) 
Joint 1 [0 0 2.2574]$ [0 0 0]$ 
Joint 2 [0 0 2.2575]$ [−1.6489 1.6378 0]$ 
Joint 3 [0 0 2.2575]$ [−5.482 −4.667 0]$ 
Joint 4 [0 0 2.259]$ [0 0 0]$ 
Joint 5 [0 0 2.2575]$ [−3.890 6.057 0]$ 
Joint 6 [0 −1.0027 0]$ [2.035 0 0.3145]$ 
Joint 7 [0 0 1]$ [0 0 0]$ 

  
The angular and linear velocities for each joint were computed and tabulated in Table 5. 

As expected, the linear velocity for joints J7, J4, and J1 are zero since they are fixed in space. The 
angular velocity of joint J7 describes the end effector rotation in the X-Z plane about its local z-
axis. This drives the linear actuator with a linear velocity of [-1.65 1.64 0] mm/s and joint with an 
angular velocity of 2.257 deg/s in its local z-axis.  
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Figure 8: Actuator Stroke Length Vs. End Effector Motion Angle. 

 Figure 8 illustrates a significant graph that is used to compare the motion of the linear 
actuator with the end effector rotation. The figure plots the actuator stroke length (r1) versus the 
end effector rotation angle which is predefined at the beginning of the analysis. It was discovered 
that as the end effector angle increases from 0 to 30 with an increment of 1 deg/s, the linear actuator 
stroke increases proportionally. This trend was expected since linkage A is designed to extend 
throughout its motion limits.  

5.2 Acceleration Analysis 
The derivation of acceleration equations for each joint starts with the end effector to the 

linear actuator at joint J2 and base rotation at joint J1. The acceleration at position P5 is calculated 
by taking a time derivative of its velocity relationship. The acceleration vector for point P5 is as 
follows: 

 

𝑨0 = 𝑟/ ∗ k𝜔/4 ∗ D
sin(𝜃/)
0

cos(𝜃/)
J − �̇�/ ∗ D

cos(𝜃/)
0

−sin(𝜃/)
Jm 

 
Furthermore, taking a double time derivative of magnitude equations for r3 and r4 and then 

simultaneously solving them gives the acceleration vector for point P4. Note that since the z-
component for the position vector at point P4 is zero, its acceleration component will also be zero. 
Thus, the relationship becomes two unknowns with two equations. Additionally, the acceleration 
at point P3 is zero since it is fixed in space. The acceleration for point P4 can be calculated by 
simultaneously solving the following equations. 

 
𝑉2:4 + ^𝑃2: − 𝑃0:_ ∗ 𝐴2: + (𝐴29 − 𝐴09) ∗ (𝑃29 − 𝑃09) + (𝑉29 − 𝑉09)4 + (𝑃0; ∗ 𝐴0;) + 𝑉0;4 = 0 

 
𝑉294 + 𝑉2:4 − (𝑃59 − 𝑃29) ∗ 𝐴29 − ^𝑃5: − 𝑃2:_ ∗ 𝐴2: = 0 
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The acceleration of point P2 can be calculated by taking the double time derivative of its 

position relationship. The acceleration vector for point P2 is calculated as follows: 
 

𝑨4 = 𝑟4 ∗ 𝑹4 ∗
𝑨2
𝑟5

 

 
The stroke acceleration of the linear actuator is calculated by the control rate equation 

derived using Jacobian formulations. Using the computed acceleration vector A2 and a control 
sample period of 1 sec, the Jacobian formulation and the control rate are as follows: 

 
𝑉4,! = 𝑉4,!<' − 𝑨4,! ∗ (Δ𝑡) 

 

Δ𝐴*+)=*)8> =
b𝑉4,! − 𝑉4,!<'b

Δ𝑡  
 
 The control rate equation defines the change in acceleration of the actuator stroke. ΔA 
represents the change in stroke velocity corresponding to the sample period Δt. This acceleration 
is proportional to the actuator linear acceleration which is required for the end effector rotation 
motion at the defined angular velocity (ω6 = 1 deg/s) and angular acceleration (⍺6	=	1	deg/s2) as 
defined in the problem statement. 
 
Table 6: Angular Acceleration and Linear Acceleration for Joints. 

 Angular Acceleration 
(deg/s2) 

Linear Acceleration 
(mm/s2) 

Joint 1 [0 0 1.9309]$ [0 0 0]$ 
Joint 2 [0 0 1.9309]$ [−1.4749 1.3351 0]$ 
Joint 3 [0 0 1.9309]$ [−4.508 −4.211 0]$ 
Joint 4 [0 0 1.933]$ [0 0 0]$ 
Joint 5 [0 0 1.9309]$ [−3.568 5.031 0]$ 
Joint 6 [0 −1.0027 0]$ [2.029 0 0.35]$ 
Joint 7 [0 0 1]$ [0 0 0]$ 

 
 The angular and linear acceleration for each joint were computed and tabulated in 

Table 6. As expected, the linear acceleration for joint J7, J4, and J1 are zero since they are fixed 
in space. The angular acceleration of joint J7 describes the end effector rotation in X-Z plane about 
its local z-axis. This drives the linear actuator with a linear acceleration of [-1.47 1.33 0] mm/s2 
and joint with an angular acceleration of 1.93 deg/s2 in its local z-axis.  
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Figure 9: Linear Actuator Speed and Acceleration Vs. Actuator Stroke Length. 

 Figure 9 plots the linear stoke velocity and acceleration for the actuator versus the actuator 
stroke extension length. Following this, Figure 10 plots the linear stoke velocity and acceleration 
for the actuator versus the end effector rotation angle. As the end effector angle increments from 
0 to 30 degrees with an angular velocity of 1deg/s and an angular acceleration of 1deg/s2, the linear 
actuator extends. As the actuator extends, the linear velocity and acceleration of the actuator follow 
a similar trend. These parameters start with a high enough velocity and acceleration to rotate the 
winglet and gradually slow down as the actuator end point (P2) reaches its final position. The 
significance of this velocity and acceleration control rate is used to understand the operation of 
linear actuators. A gradual decrease in the slope of the actuator’s linear velocity and acceleration 
supports the structure from any impulse body forces thus making the morphing winglet motion 
seamless.  

 
Figure 10: Linear Actuator Speed and Acceleration Vs. End Effector Motion Angle. 
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Table 7: Position, Velocity, and Acceleration of the Linear Actuator at each Sample Period. 
Time (sec) End Effector 

Rotation (deg) 
Position (in) Velocity (in/s) Acceleration 

(in/s2) 
0 0 15.28 - - 
5 5 15.68 0.1621 0.1507 
10 10 16.12 0.1269 0.1225 
15 15 16.62 0.1104 0.1079 
20 20 17.18 0.1001 0.0984 
25 25 17.86 0.0920 0.0911 
30 30 18.81 0.0860 0.0848 

 
 Table 7 tabulates the position, velocity, and acceleration of the linear actuator during the 
rotation of the end effector. The data presented is every 5 seconds, however, the parameters are 
computed every sample period of 1 sec. The data verifies Figures 9&10. As the linear actuator 
extends, from its static position of 15.28 inches to its final position of 18.81 inches, the end effector 
rotates 30 degrees. For the Linkage B mechanism, its actuator stroke length, velocity, and 
acceleration can be computed using a similar analysis discussed in the previous sections.  

The position, velocity, and acceleration data computed here for the two branches is used to 
develop a basic CAD model for the entire parallel linkage mechanism. The parameters of this 
model are briefly described in Section 7. 

6. Dynamic Analysis 
 The joint forces for the mechanism presented in Figure 11 can be calculated following the 
completion of position analysis and motion analysis in the previous section. The forces, torques, 
and moments are calculated using the joint accelerations computed previously, the link’s mass and 
moment of inertia, tip forces, and moments.  
 

 
Figure 11: Stick Figure of the Mechanism Indicating Body Vectors and Joint Nomenclature. 

 The mass of each body is predefined, based on the material and volume of the link, and the 
moment of inertia is calculated using the body’s mass, height, and radius. The body mass and 
moment of inertia are further tabulated in Table 8. The tabulated data follows the nomenclature 
defined in Figure 11. 
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Table 8: Body Mass and Moment of Inertia. 
 Mass (kg) Moment of Inertia (Kg.m2) 

Body 1 5 0.0633 
Body 2 5 0.0144 
Body 3 5 0.0144 
Body 4 5 0.0108 
Body 5 5 0.0063 

 
 Following defining the joint acceleration, mass, and moment of inertia for each body, the 
forces on each joint can be calculated for a static case and a dynamic case. The static case requires 
the payload and the mechanism to be in its initial configuration (θ6	=	0o). Whereas the dynamic 
case requires the payload and the mechanism to be in its final configuration (θ6	=	30o). After 
which, based on the payload case mentioned above, the lift forces, tip moment, and payload mass 
are defined.  

6.1 Static Payload 
 The Static case requires the payload and the mechanism to be in its initial configuration 
(θ6	=	0o) as seen below. 

 
 

The lift forces, tip moment vector, payload mass, and gravitational acceleration vector are 
defined in Table 9. These parameters are used to calculate the joint forces for each branch using 
the recursive wrench computing method. 
 
Table 9: Tip Forces, Tip Moments, and Payload Mass. 

Lift 1000 N 
Tip Force [0 0 1000]$ N 

Tip Moment [135 150 0]$ N.m 
Payload Mass 50 Kg 

Gravitational Acceleration [0 0 −10]$ m/s2 
 
Table 10: Joint Force and Moment Results for the Static Case. 

 Force (N) and Moment vector (N.m) 
Branch 1 

𝐹9
𝐹:
𝐹;
𝑀9
𝑀:
𝑀;

=

𝐽5 𝐽6
0 0
0 0

−450 −500
−135 −135

8.4 ∗ 105 −150
0 0
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 Force (N) and Moment vector (N.m) 
Branch 2 

𝐹9
𝐹:
𝐹;
𝑀9
𝑀:
𝑀;

=

𝐽3 𝐽4 𝐽5
0 0 0
0 0 0

−400 −450 −500
−62 ∗ 105 −20 ∗ 105 −135
135 ∗ 105 70 ∗ 105 −150

0 0 0

 

Branch 3 
𝐹9
𝐹:
𝐹;
𝑀9
𝑀:
𝑀;

=

𝐽3 𝐽2
0 0
0 0

−400 −450
−62 ∗ 105 −3 ∗ 105
135 ∗ 105 185 ∗ 105

0 0

 

Branch 4 
𝐹9
𝐹:
𝐹;
𝑀9
𝑀:
𝑀;

=

𝐽1 𝐽2 𝐽3
0 0 0
0 0 0

−350 −400 −450
−44 ∗ 105 −129 ∗ 105 −3 ∗ 105
326 ∗ 105 310 ∗ 105 −185 ∗ 105

0 0 0

 

 
Table 10 tabulates the joint Force and Moment vectors in their global frames. As seen joint 

J1 experiences the lease force of -350 N in the global z-axis and the maximum moment of 326 
kN.m about the global y-axis. Whereas the end effector joint J7 experiences a force of -500 N in 
its global z-axis and a moment of -135 kN.m about its global y-axis. The linear actuator joint J2 
experiences a force of -400 N in the global z-axis and 310 kN.m moment about the global y-axis. 
 
Table 11: Joint Local Forces and Torques. 

 Joint Forces (N) Joint Torques (N.m) 
Branch 1 

𝐹9
𝐹:
𝐹;

=

𝐽7
−255
−389.7
0

 
𝑇9
𝑇:
𝑇;

=

𝐽7
116.9
67.5

8.4 ∗ 105
 

Branch 2 
𝐹9
𝐹:
𝐹;

=

𝐽4 𝐽5
0 76
0 −433.5

−400 93.9

 
𝑇9
𝑇:
𝑇;

=

𝐽4 𝐽5
20 ∗ 105 −169.4
148 ∗ 105 −15 ∗ 105

0 −72 ∗ 105
 

Branch 4 
𝐹9
𝐹:
𝐹;

=

𝐽1 𝐽2
0 400
0 0

−350 0

 
𝑇9
𝑇:
𝑇;

=

𝐽1 𝐽2
129 ∗ 105 0
332 ∗ 105 310 ∗ 105

0 129 ∗ 105
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Table 11 tabulates the local forces and torques acting on the joints. The local torque acting 
on the end effector joint J7 is [117 67 8400]’ N.m. The local torque acting on the linear actuator 
joint J2 is [0 310 129]’ kN.m.  

Thus, the next step in this analysis is to complete a structural analysis of the parallel 
mechanism to check whether the links can sustain the applied forces. This is important to check 
because if the mechanism fails under the given loading, the entire wing can suffer catastrophic 
damage. In this project, only static analysis is considered since a dynamic analysis would require 
a calculation of the drag force’s impact on the tip force and moment as well as the material’s 
stiffness. The reasons for this are discussed further in section 8. 

7. CAD Modelling 
 The results of position analysis are used to develop a CAD model on Solidworks. As seen 
in Figure 12, it shows a static configuration of the parallel mechanism where in θ6	=	0o.	The	
mechanism	 functions	with	 the	 linear	 actuator	 driving	 the	 planar	 loop	which	 rotates	 the	
winglet	in	an	X-Z	frame	about	the	z-axis. 
 

 
Figure 12: CAD Model of the Parallel Mechanism at Static Configuration. 

Figure 13 illustrates the final configuration of the parallel linkage mechanism, wherein θ6	=	30o.		
 

 
Figure 13: CAD Model of the Parallel Mechanism at Final Configuration. 
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8. Discussion 
 The main objective of this project is to complete a dynamic modeling and analysis of a 
parallel linkage system using basic computational dynamics knowledge and resources learned 
during the course. The operation of this mechanism was simplified well beyond how this system 
would actually function. The motion of the initial planar loop was considered to be in the X-Y 
frame only and the motion of the end effector rotation was to be in the X-Z frame. This simplified 
the motion of the spherical joints located at joints J3 and J5. This is why, their calculated positions 
are in X-Y plana and not spatial. However, in reality, the motion of this mechanism requires a 
spatial motion at joints J3 and J5. This is one of the limitations of studying the mechanism 
analytically.  
  

The actuators for the parallel mechanism were not analyzed to be synchronous in motion 
for this analysis. This assumption simplified the problem to be solved separately without any 
actuator stroke length, velocity, and acceleration constraints. However, for the function of this 
mechanism, the linear actuator for linkage A and linkage B should be synchronized to achieve an 
optimal motion of the end effector without any overlapping constraints. Additionally, the actuator 
control rate was set up independent of the forces and torques acting upon it. This is because, to set 
up a force-dependent control rate for the actuator, a control law would have to be designed that 
uses the forces in negative feedback to output an applicable actuator velocity and acceleration. 
  

The aerodynamic forces and the payload weight forces were divided into halves before 
applying to the tip. This was done while assuming an equal distribution of forces over the two 
linkages. However, the ratio for force distribution can vary between 0.1 to 1 depending on the 
force feedback of the linear actuators, the position of the winglet, and other aerodynamic and 
aeroelastic parameters.  

 
Lastly, the analysis does not account for any drag forces or aeroelastic acting on the 

winglet. Therefore, the dynamic payload calculations weren’t done. As this would require the 
equations to reflect a contribution from drag forces, material stiffness, contact forces, and joint 
acceleration.  
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9. Conclusion 
In conclusion, this project aimed to comprehensively model a dynamic system using 

MATLAB resources and equations of motion developed in class. The primary focus was on 
understanding the design, motion, and control of the system, with specific attention given to 
computing the tool tip's position, orientation, and kinematics. 

 
To achieve this, the project employed an inverse kinematics methodology, wherein the 

motion of the tool tip (winglet) guided the analysis procedure to compute the base parameters, 
including orientations, positions, velocities, and accelerations for each joint. This reverse-order 
approach facilitated a detailed understanding of how the system's components interact to produce 
the desired motion. The position analysis is completed using the inverse kinematics of the 
mechanism. In this analysis, the rotation of the end effector (P6 or J7) in the X-Z frame is given 
by an angle θ6. For analysis purposes, this angle is assumed as 30 degrees. The pre-defined θ6 will 
give the orientation for the end effector which then drives the linear actuator at joint J2. As the end 
effector angle increments from 0 to 30 degrees with an angular velocity of 1deg/s and an angular 
acceleration of 1deg/s2, the linear actuator extends. As the actuator extends, the linear velocity and 
acceleration of the actuator follow a similar trend. These parameters start with a high enough 
velocity and acceleration to rotate the winglet and gradually slow down as the actuator end point 
(P2) reaches its final position. 

 
Furthermore, the analysis utilized the Euler-Newton Recursive method to calculate the 

joint forces under the influence of self-weight, payload weight, and tip force. This step was crucial 
in understanding the forces acting on each joint and how they contribute to the overall system 
dynamics. The local torque acting on the end effector joint J7 is [117 67 8400]’ N.m. The local 
torque acting on the linear actuator joint J2 is [0 310 129]’ kN.m. The end effector joint J7 
experiences a force of -500 N in its global z-axis and a moment of -135 kN.m about its global y-
axis. The linear actuator joint J2 experiences a force of -400 N in the global z-axis and 310 kN.m 
moment about the global y-axis. 
 

Overall, this project has provided a comprehensive understanding of the system's 
dynamics, from kinematics to forces and motion simulation. It serves as a solid foundation for 
future studies and applications in the field of mechanical engineering and robotics. 
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